Biosynthesis of Ursene-type Triterpenes from Sodium [1,2-¹³C]Acetate in Tissue Cultures of *Isodon japonicus* Hara and Re-assignments of ¹³C N.m.r. Signals in Urs-12-enes

By Shujiro Seo, Yutaka Tomita,* and Kazuo Tori

(Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan)

Summary The mechanism of biosynthesis of the E-ring in ursene-type triterpenes has been elucidated by 13 C n.m.r. studies of the 13 C-doubly labelled ursolic acids (4) and (5) isolated from *Isodon japonicus* tissue cultures fed with sodium [1,2- 13 C]acetate.

In a previous paper,¹ we presented experimental verification for Ruzicka's hypothesis² for cyclisation of squalene 2,3-oxide to pentacyclic triterpenes on the basis of ¹³Clabelling patterns elucidated by ¹³C n.m.r. spectroscopy³ in the oleanene-type triterpenes, oleanolic (1), maslinic (2), and 3-epimaslinic acids (3), isolated from *Isodon japonicus* tissue cultures fed with [4-¹³C]mevalonic acid. However, for the ursene-type triterpenes, ursolic (4) and 2 α -hydroxyursolic acids (5), obtained simultaneously from the callus, the mechanism of E-ring biosynthesis remains ambiguous.

We now report a further ${}^{13}C$ n.m.r. study of the five triterpenes (1)—(5)[†] isolated from tissue cultures grown in Linsmaier-Skoog liquid media containing sodium [1,2- ${}^{13}C$]acetate (0.15 mg cm⁻³ of a 2:1 mixture of unlabelled and [1,2- ${}^{13}C$]acetate) in a manner similar to that described previously.^{1,4} This study elucidates an unambiguous biosynthetic route to the ursene-type triterpenes.

Prior to examinations of ¹³C-doubly-labelled products, we re-examined the ¹³C FT n.m.r. spectra of the methyl esters (1a)—(5a) of the triterpenes (1)—(5), because the ¹³C signal assignments previously reported,⁵ particularly for the methyl groups, involve a few ambiguities which may lead to incorrect results, and because Knight⁶ has published different signal assignments for α - and β -amyrins. Several ¹H single-frequency off-resonance decoupling experiments7 were carried out on the ¹³C spectra of (1a) and (4a) in [2H]-chloroform containing various amounts of Eu(fod)₂.8 Since signals due to the methyl and some other protons in the triterpene-Eu(fod)₃ mixtures were assignable as reported recently,⁹ the ¹³C methyl signals were confirmed on the basis of the signal multiplicities and the magnitudes of residual couplings. The ¹H and ¹³C signals were followed by plotting signal shift vs. Eu(fod)₃ concentration. As a result, the previous assignments⁵ for C-11, C-27, and C-29 of (4a), its acetate and ketone, and (5a) were found to be interconverted as shown in the Table.[‡]

The ¹H-noise-decoupled spectra of (4a) and (5a) biosynthetically prepared from sodium $[1,2^{-13}C]$ acetate, overlapping with the natural-abundance spectra, clearly showed eighteen doublets and twelve singlets. These ¹³C doublelabelling patterns, in particular the appearance of singlet signals for C-19, C-20, C-21, C-29, and C-30, provide confirmatory evidence that the biosynthesis of ursene-type triterpenes proceeds along a route indicated in the scheme

† The compounds (1a), (2a), (3a), (4a) and (5a) were enriched by ca. 2.0, 2.3, 2.5, 2.0 and 2.2 times, respectively.

 \ddagger We have also confirmed that Knight's assignments⁶ for α - and β -amyrins are correct on the basis of similar experiments.

TABLE

Carbon-13 n.m.r. spectral data on methyl 3-epimaslinate (3a), ursolate (4a), and 2α -hydroxyursolate (5a) biosynthetically synthesized from sodium [1,2-13C]acetate^a

	(3a)			(4a)			(5a)		
		Multi-			Multi-			Multi-	
atom	δC	plicity	J/Hz	δC	plicity	$J/{ m Hz}$	δC	plicity	J/Hz
C-1	41.7	s		38.8	s		46 ·8	s	
C-2	66.5	d	38	$27 \cdot 3$	d	38e	68.9	d	38
C-3	78.9	d	37	78.8	d	36	83.8	d	38
C-4	38.5°	d	35e	$38 \cdot 8$	d	38e	39.1	d	36e
C-5	48.1	d	34	$55 \cdot 4$	d	35	$55 \cdot 4$	d	36
C-6	18.1	d	35^{e}	18.4	d	36	18.4	d	36 ^e
C-7	$32 \cdot 5$	s		33 ·0	s		32.9	s	
C-8	39.7	d	36e	39.6	d	38e	39.6	d	38e
C-9	47.4	d	34^{e}	47.5	d	36 ^e	47.5	d	36e
C-10	38·3c	d	35e	37.0	d	38e	38.3	d	37e
C-11	$23 \cdot 4^{\mathrm{b}}$	d	35	23.3p	d	36 ^e	$23 \cdot 4^{\mathrm{b}}$	d	36 ^e
C-12	$122 \cdot 1$	d	73	$125 \cdot 5$	d	71	$125 \cdot 3$	d	73
C-13	143.8	d	72	138.0	d	72	138.1	d	73
C-14	41.9	d	36e	42.0	d	37e	$42 \cdot 1$	d	36°
C-15	27.7	s		28.2	S		28.0	s	
C-16	23·2 ^b	s		$24 \cdot 3$	s		$24 \cdot 3$	s	
C-17	46.8	d	55e	48.1	\mathbf{d}	56e	48.1	d	56
C-18	41.3	s		$52 \cdot 8$	s		$52 \cdot 8$	s	
C-19	46.0	s		39·1°	s		39·1c	s	
C-20	30.7	d	36	3 8.8c	s		38.9c	s	
C-21	34 ·0	s		30.7	s		30.7	s	
C-22	$32 \cdot 5$	s		36.7	s		36.7	s	
C-23	28.5	s		$28 \cdot 2$	s		28.7	s	
C-24	21.9	d	36 ^e	$15 \cdot 5d$	d	38e	17.0	d	36e
C-25	16.4	d	36	15.7d	d	38e	17.0	d	36e
C-26	17.0	d	36 ^e	16.9	\mathbf{d}	37e	17.0	d	36e
C-27	26.2	d	35	$23 \cdot 6^{\mathrm{b}}$	d	36	23·7b	d	36 ^e
C-28	$178 \cdot 1$	d	55	177.7	d	56	177.9	d	56
C-29	$33 \cdot 2$	d	36	16.9 ^b	s		17.0p	s	
C-30	$23 \cdot 6$	s		$21 \cdot 2$	s		$21 \cdot 2$	S	

* ¹³C FT n.m.r. spectra were taken with a Varian NV-14 spectrometer operating at 15.09 MHz in [²H]-chloroform using 8 mm tubes at room temperature (30 °C). Accuracies of chemical shifts δ_c and J-values were about ± 0.1 and ± 1 Hz, respectively.^b The assignments of these signals were revised; cf. ref. 5.^{c,d} The assignments of these signals were only based on experiments using the shift reagent and may be reversed. • These J-values may be accurate to ± 2 Hz because of overlapping of one peak of the doublet signals with other signals.

postulated earlier,² and that an alternative mechanism¹ involving an intermediate (7) can be excluded.

The ¹³C n.m.r. spectra of (1a)-(3a) simultaneously obtained from the callus gave twenty doublets and ten singlets. These ¹³C labelling patterns also strongly support the biosynthetic mechanism of oleanene-type triterpenes verified previously,¹ and that oleanene- and ursene-type triterpenes are formed via a process involving the same intermediate (6). Furthermore, the C-23 and C-30 methyl groups in (1a)—(3a), each appearing as a singlet, were clearly demonstrated to be derived from C-2 of mevalonic acid, confirming the results of earlier studies.¹⁰ It should be noted that the C-20 and C-29 signals in (3a) appear as an AB-type quartet at δ_c 30.7 and 33.2, respectively (J 36 Hz); this fact also supports the above result.§

(Received, 8th September 1975; Com. 1016.)

§ In the ¹³C signal assignments for (3a) previously reported,⁵ those for C-11 and C-16 should be interchanged; the other assignments were confirmed as a result of the present study; $\delta(C-1)$ 47.7 in ref. 5 should read 41.7.

¹S. Seo, Y. Tomita, and K. Tori, J.C.S. Chem. Comm., 1975, 270.

- ² L. Ruzicka, A. Eschenmoser, and H. Heusser, *Experientia*, 1953, 9, 357; A. Eschenmoser, L. Ruzicka, O. Jeger, and D. Arigoni, Helv. Chim. Acta, 1955, 38, 1890.
 - ³ For a review, see U. Séquin and A. I. Scott, Science, 1974, 186, 101.
 ⁴ Y. Tomita and S. Seo, J.C.S. Chem. Comm., 1973, 707.
 ⁵ S. Seo, Y. Tomita, and K. Tori, Tetrahedron Letters, 1975, 7.

 - ⁶ S. A. Knight, Org. Magnetic Resonance, 1974, 6, 603.
 ⁷ G. C. Levy and G. L. Nelson, 'Carbon-13 Nuclear Magnetic Resonance for Organic Chemists,' Wiley-Interscience, New York, 1972.
 ⁸ B. Birdsall and J. Feeney, J.C.S. Perkin II, 1972, 1972.
- ⁹ K. Tori, S. Seo, and Y. Tomita, Chem. and Ind., 1975, 434.
 ¹⁰ T. Suga, T. Shishibori, and S. Kimoto, Chemistry Letters, 1972, 313.